Home
Featured
Publications
Contact
Light
Dark
Automatic
machine learning
AViT: Adaptive Tokens for Efficient Vision Transformer
Transformer with adaptive inference where simpler images are classified faster. Tokens are automatically stopped at various depth once become irrelevant. Learned via differentiable loss inspired by ACT.
H. Yin
,
A. Vahdat
,
J. Alvarez
,
A. Mallya
,
J. Kautz
,
P. Molchanov
PDF
Cite
Code
CVPR2022 (Oral)
Global Vision Transformer Pruning with Hessian-Aware Saliency
Global pruning of vision transformer networks. New parameter redistribution rule for ViT. 2x latency reduction with minor acucracy loss. More than 1.4% accuracy gain when pruned towards smaller model.
H. Yang
,
H. Yin
,
M. Shen
,
P. Molchanov
,
H. Li
,
J. Kautz
PDF
Cite
Code
Project
Video
CVPR2023
«
Cite
×