Home
Featured
Publications
Contact
Light
Dark
Automatic
1
Gradvit: Gradient inversion of vision transformers
Images can be recovered from averaged gradients in Transformers, they are more vulnerable than CNNs.
Ali Hatamizadeh
,
Hongxu Yin
,
Holger Roth
,
Wenqi Li
,
Jan Kautz
,
Daguang Xu
,
Pavlo Molchanov
PDF
Cite
Code
CVPR2022
AViT: Adaptive Tokens for Efficient Vision Transformer
Transformer with adaptive inference where simpler images are classified faster. Tokens are automatically stopped at various depth once become irrelevant. Learned via differentiable loss inspired by ACT.
H. Yin
,
A. Vahdat
,
J. Alvarez
,
A. Mallya
,
J. Kautz
,
P. Molchanov
PDF
Cite
Code
CVPR2022 (Oral)
DexYCB: A benchmark for capturing hand grasping of objects
Yu-Wei Chao
,
Wei Yang
,
Yu Xiang
,
Pavlo Molchanov
,
Ankur Handa
,
Jonathan Tremblay
,
Yashraj S Narang
,
Karl Van Wyk
,
Umar Iqbal
,
Stan Birchfield
,
others
PDF
Cite
Code
Project
Video
Data-free knowledge distillation for object detection
Akshay Chawla
,
Hongxu Yin
,
Pavlo Molchanov
,
Jose Alvarez
PDF
Cite
Code
Global Vision Transformer Pruning with Hessian-Aware Saliency
Global pruning of vision transformer networks. New parameter redistribution rule for ViT. 2x latency reduction with minor acucracy loss. More than 1.4% accuracy gain when pruned towards smaller model.
H. Yang
,
H. Yin
,
M. Shen
,
P. Molchanov
,
H. Li
,
J. Kautz
PDF
Cite
Code
Project
Video
CVPR2023
Kama: 3d keypoint aware body mesh articulation
Umar Iqbal
,
Kevin Xie
,
Yunrong Guo
,
Jan Kautz
,
Pavlo Molchanov
Cite
Optimal quantization using scaled codebook
Yerlan Idelbayev
,
Pavlo Molchanov
,
Maying Shen
,
Hongxu Yin
,
Miguel A Carreira-Perpinán
,
Jose M Alvarez
Cite
Optimizing Selective Protection for CNN Resilience
Abdulrahman Mahmoud
,
Siva Kumar Sastry Hari
,
Christopher Wardlaw Fletcher
,
Sarita V Adve
,
Charbel Sakr
,
Naresh Shanbhag
,
Pavlo Molchanov
,
Michael B Sullivan
,
Timothy Tsai
,
Stephen W Keckler
Cite
See through gradients: Image batch recovery via gradinversion
Hongxu Yin
,
Arun Mallya
,
Arash Vahdat
,
Jose M Alvarez
,
Jan Kautz
,
Pavlo Molchanov
Cite
Dreaming to Distill: Data-free Knowledge Transfer via DeepInversion
Statistics stored in batch normalization layers contain information on training data. Via iterative optimization we recover images from train distribution and use for various applications.
H. Yin
,
P. Molchanov
,
J. M. Alvarez
,
Z. Li
,
A. Mallya
,
D. Hoiem
,
N..Jha
,
J. Kautz
PDF
Cite
Code
Slides
Video
«
»
Cite
×